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It is known that in a water solution with multivalent counterions �Z-ions� two likely charged macroions can
attract each other due to correlations of Z-ions adsorbed on their surfaces. This “correlation” attraction is short
ranged and decays exponentially with increasing distance between macroions at characteristic distance A /2�,
where A is the average distance between Z-ions on the surfaces of macroions. In this work, we show that an
additional long-range “polarization” attraction exists when the bare surface charge densities of the two mac-
roions have the same sign, but are different in absolute values. The key idea is that with adsorbed Z-ions, two
insulating macroions can be considered as conductors with fixed but different electric potentials. Each potential
is determined by the difference between the entropic bulk chemical potential of a Z-ion and its correlation
chemical potential at the surface of the macroion determined by its bare surface charge density. When the two
macroions are close enough, they get polarized in such a way that their adjacent spots form a charged capacitor,
which leads to attraction. In a salt-free solution this polarization attractive force is long ranged: it decays as a
power of the distance between the surfaces of two macroions, d. The polarization force decays slower than the
van der Waals attraction and therefore is much larger than it in a large range of distances. In the presence of
large amount of monovalent salt, the polarization attraction decays exponentially at d larger than the Debye-
Hückel screening radius rs. Still, when A /2��d�rs, this force is much stronger than the van der Waals
attraction and the correlation attraction mentioned above. The recent atomic force experiment has shown
evidence for this polarization attraction.
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I. INTRODUCTION

Water solutions of strongly charged colloidal particles
�macroions� with multivalent �Z valent� counterions �Z-ions�
are important in physics, chemistry, biology, and chemical
engineering. Colloidal particles, charged lipid membranes,
DNA, actin, and even cells and viruses are examples of dif-
ferent macroions. Multivalent metallic ions, dendrimers,
charged micelles, short DNA and other relatively short poly-
electrolytes such as spermine can play the role of Z-ions.
Several interesting, counterintuitive phenomena have been
discovered in such a system, such as charge inversion, which
have attracted significant attention �see review paper Ref.
�1�, and references therein�. Charge inversion happens in a
water solution when a macroion binds so many Z-ions that
its net charge changes sign. This phenomenon is especially
important for gene therapy. To deliver DNA into the cell,
charge of negative DNA �playing the role of macroion�
should be inverted by positive Z-ions to approach a nega-
tively charged cell membrane. Here we actually assume that
the membrane is weakly charged and therefore its charge is
not inverted. The question is what happens if the charge of
the membrane is also inverted by positive Z-ions. Can DNA
still be attracted to the membrane?

A similar question was put forward by the recent atomic
force experiment �2� designed to verify the theory of charge
inversion based on strong correlations between Z-ions �3,1�.
In the experiment, forces between a negatively charged
spherical macroion attached to the cantilever �probe� and a
positively charged surface were measured at different con-
centrations of positive Z-ions �see Fig. 1�a�� �2�. At small
concentrations of Z-ions, the probe is attracted to the surface.
With increasing concentration of Z-ions, the charge of the

probe gets inverted by Z-ions, and the measured force at
large d becomes repulsive, where d is the distance of closest
proximity from the probe to the surface. The critical concen-
tration of Z-ions, where this happens is in reasonable agree-
ment with the prediction of Ref. �3�. However, an interesting
new feature of the repulsive force was observed. With de-
creasing d, the repulsive force reaches a maximum at d
�100 Å �which is roughly equal to the Debye-Hückel
screening radius of the solution� and starts to decrease. This
suggests that a competing attraction exists.

One can also consider a different experimental setup �4�
in which the probe and the surface are likely charged and
both adsorb Z-ions �Fig. 1�b��. When the concentration of
Z-ions is high enough so that the charges of the surface and

FIG. 1. �Color online� Schematic illustration of two experimen-
tal setups for atomic force measurements of likely charged macro-
ions. The force between the probe �the big sphere with negative
charge� and the surface is measured at different concentrations of
Z-ions �small spheres with positive charges�. �a� In the setup of Ref.
�2�, the bare surface and the bare probe are oppositely charged so
that positive Z-ions are only adsorbed to the probe and invert its
charge. �b� In the setup of Ref. �4�, the bare surface and the bare
probe are likely charged so that positive Z-ions are adsorbed to both
of them, again making them likely charged at large d.
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the probe are both inverted at large d, it is interesting to find
out whether the force may be attractive. Preliminary experi-
ments showed such attraction �4�. Notice that this setup
brings us back to the original question of attraction of
charge-inverted DNA to charge-inverted cell membrane.

Motivated by these questions, in this paper we study the
interaction between two different macroions in the presence
of a large concentration of Z-ions. We neglect all kinds of
special chemical bonding and focus on the electrostatic in-
teraction only. In the main part of the paper, we focus on the
case of two bare negatively charged macroions and positive
Z-ions corresponding to Fig. 1�b�, since it is pedagogically
simple. Only in Sec. V, we discuss the case of oppositely
bare charged macroions �Fig. 1�a�� in connection with Ref.
�2�. We assume that the valence of Z-ions, Z�1, but still
many Z-ions are needed to neutralize one macroion. The two
macroions are spherical but different in their bare surface
charge densities. We will see that this is crucial to produce
the attraction. Actually this is the reason why this attraction
was not reported before, when the focus was on identical
macroions �1�. In the calculation, we focus on the two lim-
iting cases R1=R2 and R1�R2, where R1 and R2 are the radii
of the two macroions.

Before we discuss the mechanism of this attraction, let us
first briefly review the theory of charge inversion �3�. Let us
consider a water solution with one negatively charged mac-
roion and many positively charged Z-ions. Due to the Cou-
lomb interaction, Z-ions are adsorbed to the surface of the
macroion. On the surface, they strongly repel each other with
energy much larger than kBT and form a two-dimensional
strongly correlated liquid with short-range order similar to a
Wigner crystal �WC� �Fig. 2�. When a new Z-ion approaches
the macroion, it repels already adsorbed Z-ions and creates a
negative spot for itself. One can view it as an electrostatic
image of the Z-ion, similar to the image on a conventional
conducting surface. Attraction to the image leads to an addi-
tional negative chemical potential �c �c stands for “correla-
tion”� for each Z-ion on the surface of the macroion. As a
result, when the concentration of Z-ions in the solution is
large enough, so many Z-ions are adsorbed that the net
charge of the macroion is inverted and becomes positive �3�.

As pointed out in Ref. �3�, adsorption of Z-ions onto a
macroion is very similar to the process of charging a conduc-
tor with a charge source. The macroion with adsorbed Z-ions
is a conductor in the sense that on the surface of the macro-
ion Z-ions are mobile and the electric potential is the same
everywhere. The latter is true since Z-ions should have the
same chemical potential in equilibrium. The adsorption hap-

pens since there is a chemical potential difference between a
Z-ion in the solution and a Z-ion on the surface, similar to
the electric potential difference between the conductor and
the charge source. The adsorption ends when the two chemi-
cal potentials reach the same value, which determines the
electric potential � on the surface of the macroion.

Especially, for an already neutral macroion, adsorption of
additional Z-ions can be viewed as charging a conductor with
a constant electric potential. This potential is determined by
the difference between the chemical potential of Z-ions in the
solution and the correlation chemical potential �c on the sur-
face. It is fixed during the charging process because the net
surface charge density of the macroion does not change
much and therefore �c is a constant �see Sec. II for detail
discussion�.

We want to emphasize that the constant electric potential
discussed in this paper is different from the surface potential
of a colloidal particle determined by its “potential-
determining ions” given by the Nernst equation �5�. In our
case, �c originates from correlations of Z-ions due to the
Coulomb interaction, instead of special chemical bonding. In
Ref. �6�, a similar notion of a constant electric potential was
discussed for the nonlinear screening effect of monovalent
salt, which does not induce attraction between two likely
charged macroions �see Sec. V�.

The model of conductors is very convenient to discuss the
interaction between two different macroions in the presence
of Z-ions. In this case, the macroions should be considered as
two conductors with two different fixed potentials. This is
because �c are different due to different surface charge den-
sities of two macroions �see Sec. II�. As we know from elec-
trostatics, if two conductors are charged with different poten-
tials, they may attract each other, even though the two
potentials have the same sign. Indeed, when the two conduc-
tors are close enough, the adjacent spots of them form a
charged capacitor with the given potential difference. In
other words, conductors get polarized. The polarization at-
traction competes with the overall repulsion and dominates
at small distances between two spheres. Notice that for the
attraction to appear, we do not require that the overall charge
of one conductor flips sign, which happens at a much smaller
distance.

Using the model of conductors, we find that as long as the
bare surface charge densities of the two macroions are dif-
ferent, they always attract each other at small enough dis-
tances, even when their bare charges or net charges are of the
same sign. This polarization attraction is even more appre-
ciable in the case that the sizes of the two macroions are very
different as in Fig. 1. We also find that the attractive polar-
ization force Fp decays with increasing distance as a power
law. In the case of Fig. 1, at d�rs, we get

Fp = −
�DR1

d
��1 − �2�2, �1�

where rs is the Debye-Hückel screening radius determined
by monovalent salt, D=80 is the dielectric constant of water,
R1 is the radius of the spherical probe, �1 and �2 are the
electric potentials of the probe and the surface.

FIG. 2. Z-ions are strongly correlated on the surface of the mac-
roion. Their short-range order is similar to that of a Wigner crystal
with the lattice constant A.
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We emphasize that the polarization attraction discussed
here is different from two standard attractive forces. The first
one is the well known van der Waals attraction used in stan-
dard Derjaguin-Landau-Verwey-Overbeek �DLVO� theory
�5�. In the case of Fig. 1, it is given by

FvdW = −
R1H

6d2 , �2�

where H is the Hamaker constant. It is clear that FvdW decays
with d faster than Fp. The ratio of these two forces is

Fp

FvdW
=

6�Dd

H
��1 − �2�2. �3�

For the typical H=1.0�10−20J=2.4kBT and reasonable ��1
−�2��0.4kBT /e �see Sec. II�, this ratio is larger than unity if
d�6 Å.

The second competing force is the short range attraction
between two macroions due to correlations of Z-ions on their
surfaces �7�. In the spot where two macroions touch each
other, the surface density of Z-ions is doubled and the corre-
lation energy is gained. This correlation attraction is related
to Wigner-crystal-like arrangement of Z-ions on the surfaces
and therefore decays exponentially with increasing distance
as e−2�d/A, where A is the “lattice constant” of the Wigner
crystal �see Fig. 2�. For d�A /2�, it becomes much weaker
than the polarization attraction given by Eq. �1� �we assume
that rs�A /2��. In this sense the polarization attraction is a
long-range force.

One can understand the polarization attraction from an-
other point of view, i.e., from the concept of contact electri-
fication. As well known, when two different solids contact to
each other in vacuum, due to the difference in their work
functions, certain amount of electrons move from one mate-
rial to the other, developing an electric voltage which stops
further charging. This contact electrification leads to the well
known Coulomb attraction between them �8�. Here a contact
between two objects is necessary to eliminate the kinetic
barrier for electrons and makes electrification possible during
time of experiments. If we wait long enough, the electrifica-
tion can happen even without a close contact. In our case of
macroions in water, Z-ions play the role of electrons and the
absolute value of chemical potential �c of a Z-ion on the
surface of the macroion plays the role of the work function.
To keep the same electrochemical potential of Z-ions, since
�c is different for two macroions, the electric potentials must
also be different, which leads to attraction. The difference in
our system is that the kinetic barrier for Z-ions is relatively
small and the equilibrium of Z-ions is easily achieved
through the solution.

Similar electrification phenomenon has been studied in
Ref. �9� in a toy model of two negative spherical macroions
exactly neutralized by Z-ions. The two spheres had the same
radius, but substantially different bare charges. It was shown
that under conditions of total neutrality one sphere becomes
undercharged �negative� and the other is overcharged �posi-
tive� and, therefore, they attract each other.

In the present paper, we discuss a more generic and real-
istic situation: there is certain concentration of Z-ions in the
solution �a fixed chemical potential of Z-ions� and the mac-
roions can be both undercharged or overcharged by them. In
spite of the same sign of their net charges these macroions
attract each other at small distances because of local polar-
ization around the points of closest proximity.

In the presence of large amount of monovalent salt, the
Coulomb interaction is effectively truncated at the Debye-
Hückel screening radius rs. When �1=�2, the two macroions
with adsorbed Z-ions repel each other as described by the
standard DLVO theory �5�. However, when �1��2, i.e.,
when the two macroions are different, the polarization attrac-
tion appears. When �1 and �2 have the same sign, it decays
as e−2d/rs at distances larger than rs. Still, for A /��d�rs,
this attraction is much stronger than both the van der Waals
attraction �5� and the correlation attraction �7�, which is pro-
portional to e−2�d/A.

This paper is organized as follows. In Sec. II, we describe
the interaction between two different macroions in the pres-
ence of Z-ions and show that it is similar to the interaction
between two conductors with different potentials. In Sec. III,
we discuss the interaction of two conducting spheres and
derive the power law of the attractive force. In Sec. IV, we
take into account of the effect of screening by monovalent
salt. In Sec. V, we generalize our theory to the case when
only one macroion adsorbs Z-ions in the connection with
the experiment in Ref. �2� �see Fig. 1�a��. We conclude in
Sec. VI.

II. THE MODEL OF CONDUCTORS FOR TWO
MACROIONS IN THE PRESENCE OF Z-IONS

In this section we show that the interaction between two
macroions in the presence of Z-ions can be considered as the
interaction between conductors with different electric poten-
tials. Let us first consider a single spherical macroion with
radius R and bare charge −Q	0 in a water solution with
Z-ion concentration n. The bare surface charge density of the
macroion is −
=−Q /4�R2. As we discussed in Sec. I,
Z-ions on the surface of the macroion strongly repel each
other to form a strong correlated liquid, similar to a structure
of Wigner crystal in the short range �see Fig. 2�. The chemi-
cal potential related to this correlation is dominated by its
low temperature expression, which can be estimated from the
Coulomb interaction inside each WC cell �see Eq. �9� in Ref.
�3� for the full finite temperature expression of �c�

�c�s� � −
1.65Z2e2

Dr
= −

1.65��sZ2e2

D
. �4�

Here s is the surface density of Z-ions on the macroion and

r=A��3/2� is the radius of the WC cell �see Fig. 2�. It
satisfies �r2s=1.

The equilibrium condition of a Z-ion in the solution then
reads

ZeQ*

DR
+ �c�s� = − kBT ln� s3/2

n
	 , �5�
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where Q* is the net charge of the macroion combined with
adsorbed Z-ions. The left-hand side is the electrostatic en-
ergy of a Z-ion at the surface of the macroion plus the cor-
relation chemical potential. The right-hand side is the differ-
ence between the entropic parts of the chemical potentials of
a Z-ion in the solution and at the surface. As we will see
below, this equilibrium condition is the key for the analogy
with conductors.

When n increases, the number of Z-ions adsorbed to the
macroion also increases. At some critical n=n0 , Q* becomes
zero. According to Eq. �5�, we have

n0 = s0
3/2exp�− ��c�s0��

kBT
	 . �6�

Here s0=
 /Ze is the surface density of Z-ions to neutralize
the macroion. The corresponding radius of WC cell is r0. In
the case we are interested, ��s0��Z2e2 /Dr0�kBT �this de-
fines “strongly charged” Z-ions�. Therefore n0 is an exponen-
tially small concentration which is easy to reach in experi-
ments. For n�n0, more Z-ions come to the macroion and Q*

becomes positive. According to Eq. �5�, when n is so large
that the entropy term is completely negligible, the maximum
value of inverted Q* , Qmax

* , is achieved �3�,

Qmax
* = 0.8�QZe . �7�

It is calculated by assuming

s � s0, �c�s� � �c�s0� . �8�

This assumption is self-consistent, since for Q�Ze we have
�smax−s0� /s0=Qmax

* /Q=0.8�Ze /Q�1.
Now we can clearly see the similarity between a neutral-

ized macroion and a neutral conductor. For a given n�n0,
the charging process from Q*=0 to Q*�0 can be viewed as
charging a conductor with fixed potential. Indeed, the equi-
librium condition �5� can be written as

Q* = DR� , �9�

with

� =
��c�s0�� − kBT ln�s0

3/2/n�
Ze

. �10�

Notice that � can be expressed through s0 because of Eq. �8�.
Equation �9� is exactly the same as the expression of charge
for a conductor with capacitance C=DR and charged at fixed
potential �. For n	n0, by similar discussion, we have a
conductor charged at �	0, providing that �Q*�n���Q so
that Eq. �8� is still satisfied.

Now let us consider two macroions in a water solution
with Z-ions. Clearly, when d is very large, if n is close to n0
for both macroions, the analogy to conductors holds. The
two macroions have electric potentials �1 and �2. When d
decreases, due to the interaction between two macroions, s
changes and becomes nonuniform on their surfaces. When d
is very small, s may become substantially different from s0 at
closest spots of the two surfaces. Then Eq. �8� is not valid
and �1,2 start to change with d �11�. In this paper, we stay in

the limit of large s0 so that �s−s0��s0. Accordingly, Eq. �8�
is always valid and our approximation of fixed potentials is
fine.

Rewriting Eq. �10� for two macroions, we have

�1,2 =
��c�s1,2�� − kBT ln�s1,2

3/2/n�
Ze

. �11�

Here the subindexes 1,2 represent two macroions, respec-
tively. s1,2 are the number densities of Z-ions which neutral-
ize two macroions, i.e., s1,2=
1,2 /Ze. Notice that �1,2 are
completely determined by n and s1,2, i.e., the concentration
of Z-ions and the bare surface charge densities of the two
macroions. For a given solution of Z-ion concentration n, if

1�
2 , �1��2. For example, for typical values Z= +3, n
=1 mM, −
1=−0.75 e /nm2, and −
2=−0.45 e /nm2, we
have �1=0.77kBT /e, �2=0.37kBT /e, and ��1−�2�
=0.40kBT /e. Here �c�s1�=−7.6kBT and �c�s2�=−5.7kBT are
calculated using the full expression of �c given by Eq. �9� in
Ref. �3�.

In order to calculate the force between two macroions, we
can imagine that they are conductors in ion-free water with
potentials �1 and �2 supported by two batteries. Such con-
ductors are not in equilibrium with each other while our
macroions are in equilibrium. This, however, does not matter
for the calculation of the force which is the same in both
cases. Indeed, the force depends only on potentials and ca-
pacitance matrix of the system.

III. ATTRACTION OF TWO CONDUCTING SPHERES
WITH DIFFERENT POTENTIALS

In this section, let us focus on the interaction of two con-
ducting spheres 1 and 2 with radii R1 and R2 and potentials
�1 and �2 in ion-free water �see Fig. 3�. As we explained in
the previous section, this interaction is equivalent to the in-
teraction between macroions covered by Z-ions. We define
the distance of closest proximity between the two spheres as
d and the distance between the centers of the two spheres as
L=d+R1+R2 �see Fig. 3�. Below we use L or d alternatively
for convenience. We focus on two limiting cases when R1
=R2 and R1�R2, but our approach is applicable for any two
spheres.

We start from the total free energy of two conductors with
fixed potentials �8�

U�L� = −
1

2
C11�1

2 −
1

2
C22�2

2 − C12�1�2. �12�

Here C11, C22, C12 are the self- and mutual capacitances of
the two spheres depending on L. Notice that in the case of
fixed potentials, the work done by the environment to charge
the two conductors should be included in the total energy and
therefore each term in Eq. �12� has a negative sign. The
generic formula of the force between the two conductors is
given by

F�L� = −
�U

�L
=

�C11

�L

�1
2

2
+

�C22

�L

�2
2

2
+

�C12

�L
�1�2. �13�

As will be shown, the force is always attractive when �1
��2 and the two spheres are close enough. And it decays as
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a power law with increasing distance between spheres.

A. Two spheres of the same size

Let us start from a simple case when the radii of the two
spheres are equal, i.e., R1=R2=R and C11=C22 �Fig. 3�a��.
By considering an infinite series of image charges induced in
each sphere �10�, we have

C11 = DR sinh t

n=1

�
1

sinh�2n − 1�t
, �14a�

C12 = − DR sinh t

n=1

�
1

sinh 2nt
, �14b�

where t=arccosh�L /2R�. Consequently,

�C11

�L
= −

D

2 sinh t


n=1

�
a2n−1�t�

sinh2�2n − 1�t
, �15a�

�C12

�L
=

D

2 sinh t


n=1

�
a2n�t�

sinh22nt
. �15b�

Here an�t� is defined as

an�t� = n sinh t cosh nt − cosh t sinh nt . �16�

It is easy to see that �C11/�L	0, �C12/�L�0 and
��C11/�L�	 ��C12/�L�. Therefore F	0 when �1=0 or �2
=0, or when the signs of �1 and �2 are opposite; F�0 when
�1=�2, as we expect.

We are specifically interested in the case where the signs
of �1 and �2 are the same but the magnitudes are different.

Without losing generality, we consider the case of �1��2
�0. Introducing �=�2 /�1, we have

F�L� = �� −
��2 + 1�

2
� �C11/�L

�C12/�L
�� �C12

�L
��1

2. �17�

The critical value of � at which F=0 is therefore

�c = � �C12/�L

�C11/�L
� −�� �C12/�L

�C11/�L
�2

− 1. �18�

When �	�c , F	0, and vice versa. In Fig. 4, we plot �c as
a function of L /2R by taking the first 1000 terms in the series
of Eq. �15�. We see that the attraction is possible at any
distance as far as the ratio of the two potentials is smaller
than �c. The closer the two spheres are, the larger �c is, and
the easier the attraction can be developed.

In order to determine the dependence of the attractive
force on the distance analytically, we study asymptotic be-
haviors of the force in the case of �1��2�0. In the limit of
L�2R, keeping the leading order terms in Eq. �14�, we get

C11 = DR +
DR3

L2 , C12 = −
DR2

L
�19�

and

F�L� =
DR2

L2 �1�2 −
DR3

L3 ��1
2 + �2

2� . �20�

The physical meaning of Eq. �20� is clear. When the two
spheres are far away, they repel each other similar to two
point charges in the zero order, leading to the first term. In
the first order, each point charge induces opposite charge in
the other sphere which gives attraction shown in the second
term. The attraction dominates only if �2 is much smaller
than �1, i.e., �c=R /L. The attractive force is proportional to
�R /L�3.

The more interesting limit is when the two spheres are
very close to each other, i.e., d�R. In this limit, we have

C11 =
DR

4
ln

162R

d
, �21a�

FIG. 3. The interaction between two spherical macroions in the
presence of Z-ions can be considered as the interaction between two
conducting spheres with fixed but different electric potentials. We
focus on two cases. �a� The sizes of the two spheres are equal. �b�
The size of sphere 2 is much larger than sphere 1 �the radius of
sphere 2, R2, is not shown�. For d�R2, the interaction between two
spheres can be considered as the interaction between sphere 1 with
its “image sphere” inside sphere 2.

FIG. 4. The critical �c=�2 /�1, at which the interactive force
between two spheres is zero, is plotted as a function of L /2R nu-
merically. The minus �plus� sign under �above� the curve means that
the interaction between the two spheres is attractive �repulsive�.
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C12 = −
DR

4
ln

2R

d
. �21b�

Numerical calculation gives =1.78 �see the Appendix for
the derivation of Eq. �21��. According to Eq. �13�, we have

F�d� = −
DR

8d
��1 − �2�2. �22�

Remarkably, in this limit �c=1 and the force is always at-
tractive �the only exception is �1=�2 when the leading order
term given by Eq. �22� is zero and one has to go to the next
order�. Therefore we conclude that for any small �1−�2, two
conducting spheres always attract each other at small enough
distance. This originates from the fact that in the limit of d
→0, C11 and C12 both diverge and diverge in the same way
�see Eq. �21��.

It should be mentioned that for the interaction between
two macroions, the model of conductors is valid only for d
�A. Indeed, instead of smeared charge distribution on a real
conductor surface, on the surface of the macroion, Z-ions are
discrete and form a WC-like liquid with “lattice constant” A
�see Fig. 2�. When d becomes comparable with A, the elec-
tric potential � gets a periodic component along the surface,
which does not exist for a real conductor. In this paper, we
always focus on the case when d�A. Still, for Ze�Q and,
therefore, A�R, there is a big window of A�d�R in which
the model of conductors works and Eq. �22� is applicable.

B. A small sphere close to a big sphere

Now let us consider the interaction between a small
sphere with radius R1 and a big sphere with radius R2. We are
interested in the limit R1�R2 �Fig. 3�b��. We can solve this
problem by a similar procedure as in the last subsection,
starting from a formula such as Eq. �14� but with both R1 and
R2 in it �10�. Instead of doing this complicated calculation,
let us use physics intuition and look at the interesting limit
d�R2. In this limit, the size of the large sphere, R2, becomes
irrelevant to the problem, and the interaction can be consid-
ered as the interaction between a sphere with a metallic semi-
space �see Fig. 3�b��.

Let us first consider the case when �2=0. As well known
in electrostatics, a point charge induces an image charge in a
metallic semispace which describes the interaction between
the charge and the metal. Similarly, using a series of image
charges, one can show that the interaction between a sphere
and a metallic semisphere is equivalent to the interaction
between the sphere and its “image sphere” induced in the
metal �see Fig. 3�b��. The image sphere and the original
sphere have the same size, and their positions are symmetric
about the boundary of the metal. If the original sphere has
fixed potential �1, its image sphere has fixed potential −�1.
Since these two spheres are oppositely charged, we immedi-
ately see that a conducting sphere is always attracted to a
metallic semispace. Therefore spheres 1 and 2 attract each
other.

Now we consider the case when �2�0. This potential is
equivalent to a charge sitting at the center of sphere 2, with
magnitude DR2�2. It induces an image charge in sphere 1. In

the limit of R2→�, this image charge is located at the center
of sphere 1 with the magnitude −DR1�2 �see discussion of
method of images in Ref. �10��. It is equivalent to add a
potential −�2 to sphere 1. As a result, the potential of sphere
1 is renormalized to �1−�2. Therefore, in this particular
case, the interaction between two spheres with potentials �1
and �2 is the same as two spheres with potentials �1−�2 and
0. Clearly, the attractive nature of the interaction between
sphere 1 and its image sphere is not changed by the nonzero
�2 �except the special case �1=�2 when there is no interac-
tion between the two spheres�.

Having established the attractive nature of the force, we
now calculate it quantitatively. Since the interaction is essen-
tially between sphere 1 and its image sphere, C11, C12, and
C22 can be expressed through a linear combination of Caa
and Cab, where Caa and Cab are self- and mutual capacitances
of sphere 1 and its image sphere given by Eq. �14�. We have

C11�d� = Caa�2d� − Cab�2d� , �23a�

C12�d� = Cab�2d� − Caa�2d� , �23b�

C22�d� = DR2 + Caa�2d� − Cab�2d� . �23c�

Here we put the d dependence in each C to remind us that
the distance between spheres 1 and 2 is d but the distance
between sphere 1 and its image sphere is 2d �see Fig. 3�b��.
Noticing that C11=−C12 and �C11/�d=�C22/�d, using Eq.
�13�, we have

F�d� =
�C11�d�

�d

��1 − �2�2

2

= − � �Cab�2d�
�d

−
�Caa�2d�

�d
	 ��1 − �2�2

2
. �24�

Since �Caa /�d	0 and �Cab /�d�0 as we discussed in the
last subsection, the force is attractive for any given �1 and
�2 �except the special case �1=�2 when there is no interac-
tion between the two spheres�.

The expressions of forces are particularly simple in cer-
tain limits. When R1�d�R2, using Eq. �19�, we have

F�d� = −
DR1

2

4d2 ��1 − �2�2. �25�

When d�R1, using Eq. �21�, we have

F�d� = −
DR1

4d
��1 − �2�2. �26�

This result can be compared with Eq. �22� if R1=R. We see
that the force is stronger by a factor of 2 in the case of two
spheres with different sizes. This is simply due to the fact
that the surfaces of the two spheres are “closer” and the
capacitances diverge faster in the present case.

IV. THE EFFECT OF SCREENING BY MONOVALENT
SALT

In a water solution of macroions and Z-ions, normally
there is also certain amount of monovalent salt. In most
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cases, the effect of screening by monovalent salt can be de-
scribed by the linear Debye-Hückel screening radius rs �we
discuss the possibility and effect of nonlinear screening at
the end of this section�. What we discussed in the last two
sections corresponds to the case rs�R1 ,R2 ,d. Now we
would like to consider the opposite limit A�rs�R1 ,R2. We
show that even though attraction is suppressed and loses to
repulsion at d�rs, the two spheres still attract each other at
d�rs. On the way, we develop a method of images in the
presence of monovalent salt which is exact in principle.

A. The method of images in the presence
of monovalent salt

Let us first discuss how the method of images is modified
in the presence of monovalent salt. We start from the sim-
plest situation in which there is a point charge q close to a
metallic semispace in a water solution with monovalent salt
described by screening radius rs. When rs→�, it is well
known that the equal potential condition at the boundary of
the metal can be satisfied by putting an image charge
q�=−q inside the metal at the position symmetric to q. �Here
and below, as a premise, water should also be introduced
with the image charge to produce the same dielectric con-
stant.� In the presence of monovalent salt, one can easily
check that the same boundary condition can be satisfied by
introducing the same image charge q� at the same position,
providing that a virtual cloud of monovalent ions with the
screening radius rs is produced together with the image
charge.

As a more complicated situation, let us consider a point
charge q and a grounded conducting sphere in a water solu-
tion with monovalent salt described by rs �Fig. 5�a��. As is
well known �8�, when rs→�, the magnitude and position of
the image charge are given by �see Fig. 5 for definition of all
lengths�

q� = − q
R

L
, L� =

R2

L
. �27�

When rs is finite, similar to the case of metallic semispace, a
virtual cloud of monovalent ions should be created together

with the image charge. Due to the special geometry of a
sphere, as one can check, the screening radius of this virtual
cloud is given by

rs� =
Rrs

L
, �28�

different from rs in the solution.
Another relevant situation is a conducting sphere with

fixed potential � in a water solution �see Fig. 5�b��. In this
case, the potential in the solution can be solved exactly using
linearized Poisson-Boltzmann equation and interpreted by
the method of images. Actually it is equivalent to the poten-
tial produced by a image charge q� at the center of the
sphere. We can create a virtual cloud of monovalent salt
together with the image charge for our convenience. The
magnitude of q� is then determined not only by the boundary
condition but also the virtual cloud we choose. As we will
see in the next subsection, it is convenient to introduce rs
inside the sphere and get

q� = DR�eR/rs. �29�

Let us calculate the interaction energy between a point
charge and a grounded conducting sphere �Fig. 5�a�� for the
purpose of the next subsection. Considering the interaction
energy between q and q�, we have

U =
qq�

2D�L − L��
e−�R−L��/rs�e−�L−R�/rs = −

Rq2

2D�L2 − R2�
e−2d/rs,

�30�

where d=L−R. In the limit of rs→�, the exponential factor
goes to 1 and the energy goes back to the standard expres-
sion. The additional factor e−2d/rs can be understood in the
following way. The charge induced by q on the surface of the
sphere is proportional to e−d/rs, the interaction with it is also
proportional to e−d/rs.

B. Two spheres of the same size

Now we consider the interaction between two conducting
spheres of the same size �see Fig. 3�a�� in the presence of
monovalent salt. Due to the complexity of the method of
images in the present case, instead of giving the general ex-
pression for the force, we focus on two limits d�rs and
d�rs.

Let us first discuss the case when d�rs. As well known,
when rs→�, there is an infinite series of image charges in
each sphere �10�. For finite rs, similar to what we discussed
in the last subsection, the magnitudes and positions of all
image charges are the same but a virtual cloud of monovalent
salt is created together with each of them. In the particular
case of d�rs, we can actually cut off the infinite series and
include the contribution from the leading order image
charges only. To see this, one just remembers that the image
charges really represent surface charge densities induced on
the two spheres. Each image in the infinite series gives a
correction to the surface charge density calculated from the
previous order image. As we discussed after Eq. �30�, the
new correction induced gets one more factor e−d/rs. Since d

FIG. 5. �Color online� Images in a conducting sphere in the
presence of monovalent salt with screening radius rs: �a� a point
charge q induces an image charge q�=−Rq /L with a virtual cloud
of monovalent ions with screening radius rs�=Rrs /L; �b� a conduct-
ing sphere with potential � is equivalent to a point charge q�
=DR�eR/rs with a virtual cloud of monovalent ions with screening
radius rs.
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�rs, higher order corrections are exponentially small and
can be completely neglected.

In Sec. III, the energy is calculated using capacitances
�Eq. �12��. In the present case, it is more convenient to con-
sider interaction energy between image charges directly. The
two methods are equivalent providing that a factor 1 /2 is
added to the interaction energy between a charge and its
image �8� in the later method �see Eq. �35��. The two image
charges in each sphere are given by �see Fig. 6�

q1 = DR�1eR/rs, q2 = DR�2eR/rs, �31a�

q1� = −
DR2�2

L
eR/rs, q2� = −

DR2�1

L
eR/rs. �31b�

Here q1 and q2 are zero order image charges in each sphere
which take into account of �1 and �2, respectively, similar to
q� discussed in the last subsection �see Eq. �29� and Fig.
5�b��. The screening radius accompanied with them is just rs.
The first order image charges q1� and q2� induced by q2 and q1
are accompanied by rs�=Rrs /L, similar to q� discussed in the
last subsection �see Eqs. �27� and �28� and Fig. 5�a��. Similar
to Eq. �30�, the interaction energies between these images are

U�q1,q2� =
DR2�1�2

L
e−d/rs, �32�

U�q1,q2�� = −
DR3�1

2

L2 − R2e−2d/rs, �33�

U�q2,q1�� = −
DR3�2

2

L2 − R2e−2d/rs, �34�

and

U�L� = U�q1,q2� +
1

2
�U�q1,q2�� + U�q2,q1���

= �1�2
DR2

L
e−d/rs −

�1
2 + �2

2

2

DR3

L2 − R2e−2d/rs. �35�

Correspondingly,

F�L� = �1�2
DR2

L
e−d/rs� 1

rs
+

1

L
	

− ��1
2 + �2

2�
DR3

L2 − R2e−2d/rs� 1

rs
+

L

L2 − R2	 . �36�

We see clearly that an additional factor of e−d/rs appears for
each order of interaction. When rs→�, this equation goes
back to Eq. �20� as expected.

At d�rs, the first term in Eq. �36� dominates. When �1

=�2, we have the standard double layer repulsion of DLVO
theory �5�. When �1 and �2 have same signs, only the sec-
ond term represents attraction, which is negligible comparing
with repulsion. This is analogous to Eq. �20� but attraction is
much weaker here. So in the limit of d�rs, the force is
attractive only if potentials are opposite in signs or one of
potentials is equal to zero.

Now let us consider the case when d�rs. In this case, the
factor e−d/rs �1 and all higher-order image charges should be
included. Since each image charge is accompanied by its
own virtual cloud, the interaction is very complicated. In-
stead of calculating it exactly, we estimate C11 and C12 using
a simple method as follows. We divide the surface of the two
spheres into two pieces. In the first piece, the distance be-
tween the surfaces of the two spheres is smaller than rs so
that the two spheres interact with each other in an unscreened
Coulomb way. We call this piece “contact region” �see Fig.
7�. In the second piece, the distance between the two surfaces
is larger than rs and the interaction between them is expo-
nentially small and negligible. Therefore, we can safely as-
sume that the modification to the capacitances of the two
spheres due to their proximity happens only in the contact
region.

In order to calculate C11 and C12, let us first consider a
special case when �1=�2=�. In this case, the charge in-
duced on two spheres are equal and given by ��C11+C12�. In
the contact region, the screening effect by monovalent salt
can be ignored and the adjacent spots of the two spheres
form a capacitor with zero voltage, therefore the charge is
zero �12�. While for the rest part of the sphere, the interac-
tion between two spheres is exponentially small and the
charge on each sphere is almost the same as if the other
sphere is not there. Therefore we have

FIG. 6. The first two image charges induced in each sphere in
considering the interaction between two spheres. Each image charge
has its own virtual cloud �not shown�.

FIG. 7. A schematic illustration of the contact region between
two spheres. The contact region includes the surfaces of two
spheres inside a cylinder with the cross section shown by the
rectangular.
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C11 + C12 =
DR2

rs
−

DR�rs − d�
4rs

. �37�

Here DR2 /rs is the capacitance of a single sphere in the
presence of monovalent salt. When the sphere gets close to
the other sphere, it loses its capacitance in the contact region,
whose area is �R�rs−d�.

Then we consider another special case when �1=−�2
=�. In this case, we have q1= �C11−C12��=−q2. Outside the
contact region, the capacitance is the same as in the previous
case. Inside the contact region, the capacitance can be esti-
mated as

C = D�
0

�0 dS

x���
= D�

0

�0 2�R2sin �d�

d + 2R�1 − cos ��
= �DR ln

rs

d
,

�38�

where �0 is the angle for the boundary of the contact region
�see Fig. 7�. The absolute value of the charge induced on
each sphere in the contact region is 2C�. Therefore

C11 − C12 =
DR2

rs
−

DR�rs − d�
4rs

+ 2�DR ln
rs

d
. �39�

Combining Eqs. �37� and �39�, we get

C11 =
DR2

rs
−

DR�rs − d�
4rs

+ �DR ln
rs

d
, �40a�

C12 = − �DR ln
rs

d
. �40b�

In the case of rs�R, these results match Eq. �21� which was
obtained for rs�R.

Using Eq. �13�, and remembering d�rs, we have

F = −
�DR

2d
��1 − �2�2. �41�

The force is independent of rs in this limit because the
change of capacitances happens mainly in the contact region
�the logarithm term in Eq. �40��. Again, the attraction shows
up at small d and the attractive force decays as a power law.
For the model of conductors to work, we require d�A which
is valid since A�rs.

C. A small sphere and a big sphere

Now we consider the interaction between a small sphere
and a big sphere �see Fig. 3�b�� in the presence of monova-
lent salt. The approach we used is similar to that in the last
subsection.

When d�rs, calculating the interaction between leading
order image charges similar to Eq. �36�, we get

F�L� = �1�2
DR1R2

Lrs
e−d/rs

− � R1�1
2

L2 − R2
2 +

R2�2
2

L2 − R1
2	DR1R2

rs
e−2d/rs. �42�

Again, when �1 and �2 have the same signs, attraction is

exponentially weaker in this limit. When d�rs, we can esti-
mate C11, C12, and C22 similar to Eq. �40�. We get an attrac-
tive force given by Eq. �1�.

In the end of this section, let us discuss the possibility of
nonlinear screening by monovalent salt in a special case
when �1,2�0. The result can be generalized to other cases.
The condition for linear screening reads

�1,2 	 �c =
kBT

e
�ln�cv0�� , �43�

where e is the proton charge and c and v0 are the concentra-
tion and volume of the monovalent ion. Here �c is deter-
mined by entropy of monovalent ions in the solution. Ac-
cording to Eqs. �4� and �11�, �1,2�Ze /Dr1,2�Ze /Da, where
a�r1,2 is the radius of a Z-ion �see Fig. 2�. If �1,2
��c , Ze /Da��c. Therefore monovalent counterions are
adsorbed to Z-ions. As a result, the effective charge of a
Z-ion is renormalized to

Z*e = Da�c. �44�

This effective charge is not changed when a Z-ion is ad-
sorbed on the surface of the macroion since Z*e /Dr1,2
�Z*e /Da. Consequently, �1,2 should be calculated using Z*

and satisfy �1,2	Z*e /Da=�c. In summary, the nonlinear
screening of monovalent salt is important when Z-ions are
strongly charged. In this case, our theory is still applicable
providing that Z is replaced by Z* everywhere.

V. ATTRACTION OF TWO MACROIONS, WHEN ONLY
ONE OF THEM ADSORBS Z-IONS

In this section, we generalize our theory to a little more
complicated case when the two bare macroions are oppo-
sitely charged. As shown in Fig. 1�a�, positive Z-ions are
only adsorbed to the negative probe and invert its charge. In
the presence of large concentration of monovalent salt,
monovalent counterions are adsorbed to the positive surface
�nonlinear screening�, reducing its electric potential to �c
�see Eq. �43�� �6�. This potential is certainly different from
the electric potential of the probe determined by Z-ions �Eq.
�11��. We again have two conductors with different fixed
potentials. Even when both potentials are positive �the net
charges of the surface and the probe are positive�, the force is
still attractive at small distances as we discussed in the pre-
vious section.

The atomic force experiment in Ref. �2� is actually a re-
alization of the situation discussed above. The maximum of
the repulsive force mentioned in Introduction can be under-
stood following Eq. �42�, extrapolated to d�rs. When both
potentials are positive, at d�rs, the first term �repulsion
term� in Eq. �42� dominates and the force is repulsive. At d
�rs �rs�100 Å in the experiment�, the second, attraction
term in Eq. �42� dominates due to its larger prefactor of the
exponential. This leads to the maximum of the repulsion at
d�rs. When d�rs, we have the polarization attraction given
by Eq. �1�.

For d	rs, Eq. �3� can be used to compare the polarization
attraction with the van der Waals one. According to discus-
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sions in Introduction and Sec. II, we conclude that for sub-
stantial difference between 
1 and 
2, the polarization force
Fp is much larger than FvdW at d�A �A=21 Å for Z=3 and
−
=−0.75 e /nm2�. Therefore the van der Waals attraction
has nothing to do with the attraction observed in the experi-
ment at d�100 Å.

So far we have considered two cases when the electric
potentials of the two macroions are different and the attrac-
tion between likely charged macroions is possible. One is
that positive Z-ions are adsorbed to both negative macroions;
the other is that positive Z-ions are only adsorbed to one
negative macroion, but monovalent counterions are adsorbed
�nonlinearly screening� to the other positive macroion. It is
interesting to relate them to the more standard case when two
different likely charged �say, negative� macroions are nonlin-
early screened by positive monovalent counterions �no
Z-ions in the solution�. In this case, the two macroions al-
ways have the same electric potential �c given by Eq. �43�
and never attract each other �5�.

VI. CONCLUSION

In this paper, we discussed a long-range polarization at-
traction of two likely charged spherical macroions in the
presence of multivalent counterions �Z-ions�. We show that
the necessary condition for the attraction is that the bare
charge densities of the two macroions are different. This po-
larization attraction is much stronger and longer ranged than
the van der Waals force �5� and the short-range correlation
attraction �7�. In the presence of a large amount monovalent
salt, it adds an additional term to the standard double layer
repulsion of DLVO theory when the two macroions are dif-
ferent. We discussed two cases when the polarization force
between two different macroions can be attractive, even if
their net charges have the same sign. In the first case, both
macroions adsorb Z-ions �Fig. 1�b��. In the second case, one
macroion adsorbs Z-ions while the other adsorbs monovalent
counterions �Fig. 1�a��. Here “adsorb” means that the bind-
ing energy is much larger than kBT. In both cases, due to
different equilibrium conditions of adsorbed ions, the electric
potentials of two macroions are different and the attraction is
possible. On the other hand, the attraction is impossible if
two macroions are likely charged and both adsorb monova-
lent counterions �no Z-ions in the solution�. Our result quali-
tatively agrees with atomic force experiments �2,4�.

Even though in this paper we only discuss spherical mac-
roions, the polarization attraction we discovered can be
generalized to other geometries. Actually, as seen above,
the attraction is always developed at small distances
between macroions when the overall geometry is not very
important. One can also understand this generalization using
the language of contact electrification as discussed in the
Introduction.

In this paper, in the connection with atomic force experi-
ments �2,4�, we focused on the force between two macroions

instead of the total free energy of the system. Actually, for
typical situations �e.g., A�R or A�rs�, one can show that
the free energy may have the global minimum when the two
macroions are close to each other. Thus, the polarization at-
traction can play an important role in determining the equi-
librium state of the system. It answers the gene delivery re-
lated question: even if charges of DNA and cell membrane
are both inverted, they can still be attracted to each other
since DNA and membrane certainly have different surface
charge densities. It can also be important for aggregation or
self-assembly of large ensembles of different likely charged
macroions with help of oppositely charged Z-ions. Assume
for example that we have a mixture of equal numbers of two
kinds of negative spheres with the same radius but different
values of the bare charges. Then in the presence of positive
Z-ions, they can attract each other and assemble in a NaCl-
like structure.
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APPENDIX

We derive Eq. �21� here. Let us start from the asymptotic
behavior of the series 
n=1

� 1/sinh nt at t→0. According to
the Cauchy Integral test of convergence, we have

�
1

� 1

sinh xt
dx � 


n=1

�
1

sinh nt
� �

1

� 1

sinh xt
dx +

1

sinh t
.

�A1�

Evaluating the integral in the limit of t→0, we get

1

t
ln

2

t
	 


n=1

�
1

sinh nt
	

1

t
ln

2e

t
. �A2�

In other words,



n=1

�
1

sinh nt
=

1

t
ln

2

t
, �A3�

where  is a number satisfying 1		e. Consequently,



n=1

�
1

sinh 2nt
=

1

2t
ln



t
, �A4�



n=1

�
1

sinh�2n − 1�t
=

1

2t
ln

4

t
. �A5�

Since cosh t= �2R+d� /2R, we have t=�d /R in the limit of
t→0. Using Eq. �14�, we arrive at Eq. �21�.
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